SMARKETS

Tech Talks

String processing

NLP, biology, finance

Plan

- Introduction to string processing
- String indexing. Suffix trees
- Sequence alignment
- Word embeddings. Word2Vec

Introduction to String Processing

Strings

 String = an ordered list of characters written contiguously from left to right

- Characters come from an alphabet:
 - o english (A, B, C, ...)
 - binary (0, 1)

```
A Quick Brown Fox Jumps Over The Lazy Dog 0123456789
A Quick Brown Fox Jumps Over The Lazy Dog 0123456789
A Quick Brown Fox Jumps Over The Lazy Dog 0123456789
A Quick Brown Fox Jumps Over The Lazy Dog 0123456789
A Quick Brown Fox Jumps Over The Lazy Dog 0123456789
A Quick Brown Fox Jumps Over The Lazy Dog 0123456789
A Quick Brown Fox Jumps Over The Lazy Dog 0123456789
A Quick Brown Fox Jumps Over The Lazy Dog 0123456789
```

More alphabets ⇒ more interesting strings!

- 4 nitrogen-containing nucleobases:
 - cytosine (C)
 - guanine (G)
 - adenine (A)
 - thymine (T)

More alphabets ⇒ more interesting strings!

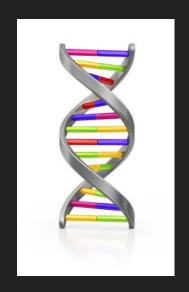
- Let each letter be a tuple containing:
 - \circ id
 - timestamp
 - current balance
 - 0 ...

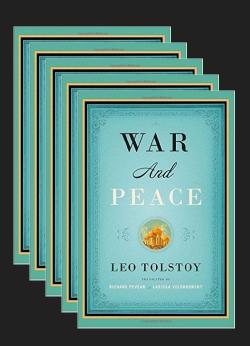
-					-	-			
-41	A	В	С	D	E	F			
1	Table: Transact	tion			+: Credit, -: Debit				
2	Transaction ID	Transaction Date Time	User ID	Account ID	Amount	Account Balance			
3	1000001	01/04/2012 09:10:19	2	1	3100.00	4,300.21			
4	1000002	01/04/2012 11:10:19	4	3	5800.00	6,412.44			
5	1000003	01/04/2012 12:10:19	3	4	1200.00	307.85			
6	1000004	01/04/2012 13:10:19	1	5	2500.00	229.87			
7	1000005	02/04/2012 09:10:19	5	1	-50.00	4,250.21			
8	1000006	02/04/2012 11:10:19	3	3	-100.00	612.44			
9	1000007	02/04/2012 14:10:19	1	6	810.00	-99,119.91			
10	1000008	03/04/2012 09:10:19	3	1	-50.00	4,200.21			
11	1000009	03/04/2012 11:10:19	1	3	-100.00	512.44			
12	1000010	03/04/2012 14:10:19	5	6	810.00	-98,309.91			

Stringology

- Science of algorithms and data structures on strings
- Many common problems across different fields

Example: word separation in natural language processing...


當世界需要<mark>溝通</mark>時,請用統一碼你現在就應報名將在1997年3月10至12日於德國美姿城召開的第十屆國際統一碼研討會。本次研討會將邀請多位業界專家研討關於全球網際網路及統一碼發展、國際化及本土化、支援統一碼的作業系統及應用程式、字型、文字排版、電腦多國語文化等多項課題。

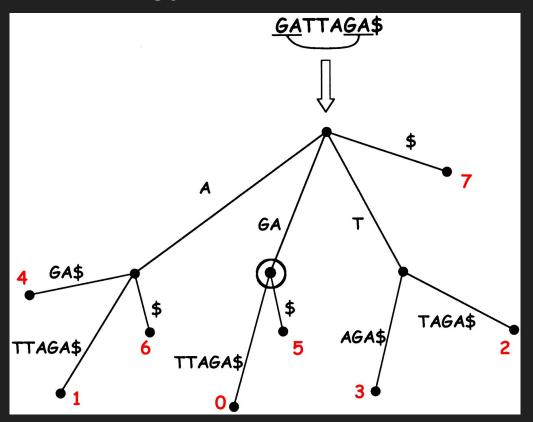

Stringology

... and identification of genes in computational biology

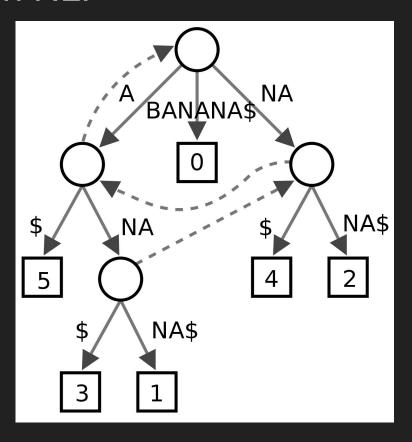
Massive strings

5 * "War and Peace"

String Indexing


String indexing

- Problem: fast searches in big texts
- Idea: if the text is static, we can try to index it


Suffix trees: major breakthrough in the 1970s

- O(n) indexing (n = |Text|)
- O(m) queries (m = |Query|)

Suffix trees in biology

Suffix trees in NLP

- Tool for comparing genomes and finding similarities
- One of the most important and well-studied problems in computational biology

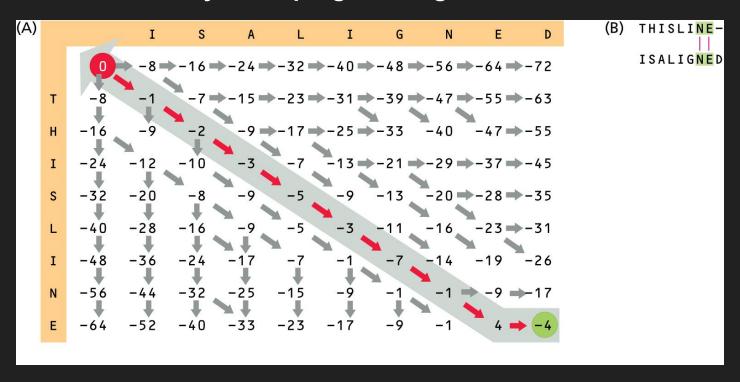
elephant	FVNQHLCGSHLVEALYLVCGERGFFYTPKTGIVEQCCTGVCSLYQLENYCN
hamster	FVNQHLCGSHLVEALYLVCGERGFFYTPKSGIVDQCCTSICSLYQLENYCN
elephant	FVNQHLCGSHLVEALYLVCGERGFFYTPKTGIVEQCCTGVCSLYQLENYCN
whale	FVNQHLCGSHLVEALYLVCGERGFFYTPKAGIVEQCCASTCSLYQLENYCN
elephant	FVNQHLCGSHLVEALYLVCGERGFFYTPKTGIVEQCCTGVCSLYQLENYCN
alligator	AANQRLCGSHLVDALYLVCGERGFFYSPKGGIVEQCCHNTCSLYQLENYCN
J	

- 3 types of columns corresponding to 3 elementary evolutionary events:
 - a. match
 - b. substitution (mismatch)
 - c. Insertion / deletion

```
R D I S L V - - - K N A G I
I I I I I I I I
R N I - L V S D A K N V G I
```

- Assign a score (positive or negative) to each event
- Alignment score = sum (scores over all columns)
- Optimal alignment = one that maximizes the score

Scoring function:


```
      Mismatch :
      Match :
      Indel :

      G, N : 6
      B, K : 5
      -5

      AV, LD : 0
      A, I, L, S, V : 4
```

Optimal scores:

Can be solved with dynamic programming

- Bioinformaticians come up with special matrices for scoring functions
- E.g. BLOSUM62 for protein sequences:

	С	S	Т	Р	Α	G	N	D	E	Q	Н	R	K	М	I	L	٧	F	Υ	W	
C	9																				C
S	-1	4																			S
Т	-1	1	5																		Т
P	-3	-1	-1	7																	P
Α	0	1	0	-1	4																Α
G	-3	0	-2	-2	0	6															G
N	-3	1	0	-2	-2	0	6														N
D	-3	0	-1	-1	-2	-1	1	6													D
E	-4	0	-1	-1	-1	-2	0	2	5												E
Q	-3	0	-1	-1	-1	-2	0	0	2	5											Q
Н	-3	-1	-2	-2	-2	-2	1	-1	0	0	8										Н
R	-3	-1	-1	-2	-1	-2	0	-2	0	1	0	5									R
K	-3	0	-1	-1	-1	-2	0	-1	1	1	-1	2	5								K
М	-1	-1	-1	-2	-1	-3	-2	-3	-2	0	-2	-1	-1	5							М
I	-1	-2	-1	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	4						I
L	-1	-2	-1	-3	-1	-4	-3	-4	-3	-2	-3	-2	-2	2	2	4					L
٧	-1	-2	0	-2	0	-3	-3	-3	-2	-2	-3	-3	-2	1	3	1	4				V
F	-2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-1	6	17. 0		F
Υ	-2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7		Y
W	-2	-3	-2	-4	-3	-2	-4	-4	-3	-2	-2	-3	-3	-1	-3	-2	-3	1	2	11	W
	С	S	Т	Р	Α	G	N	D	E	Q	Н	R	K	М	I	L	٧	F	Υ	W	

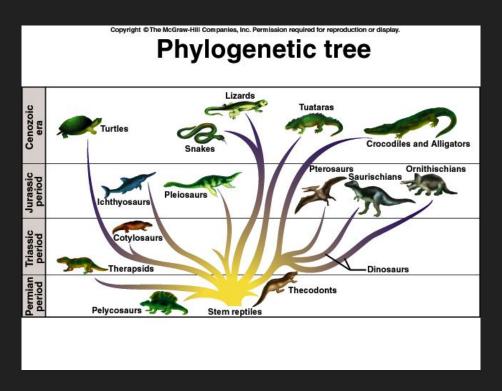
How can all this be useful for NLP?

Alignment of texts in natural languages

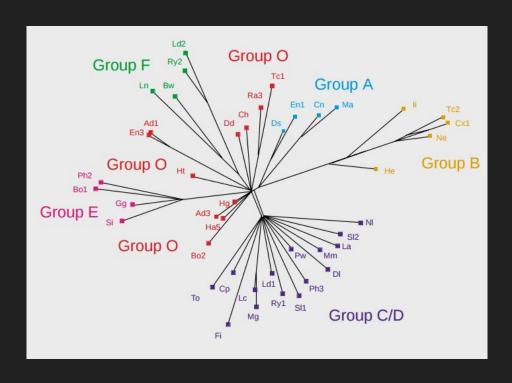
```
An interesting event occurs at the Hôtel de Lauzun today

A seminar is held today at the Hôtel Pimodan
```

- Digital humanities: analysis of historical texts
 - Old Texts have been evolving over time (copyists ...)
 - Again, evolutionary events!

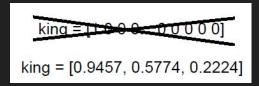

```
Eth eth of han to Kel Cas him on hime Eleffer he god that I have Kerker fine Cel come the Grote Bhan pt che he shal for outh I sol nat bere haaft in al Elan min house he for the Roll agon Som criften man offal Rever me anon for thanno thapofile certl pt Jam fice to Certe a gorden last talket it he for certl that the fee sents that to be Rever 18 no spine
```

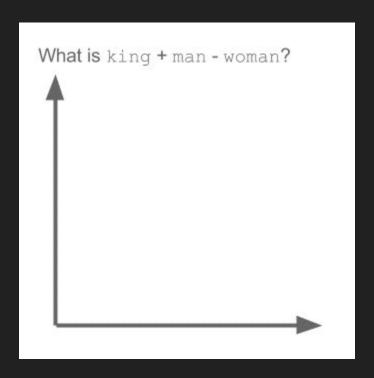
Historical text alignment

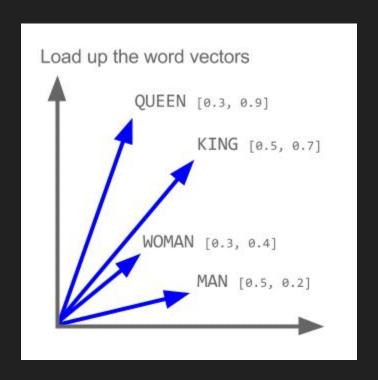

ffourtene	yeere	he	bare	his	crowne	1	reede
xiiije	yere	he	bare	his	crowne	in	dede
xiiij ^e	yere		bare	his	corone	in	dede
ffourtene	yere	he	bare	his	croune	I	rede
ffourtene	yere	bare	he	his	crowne	in	dede
fortene			bare	hys	crown	in	dede
Bare the crowne	e xij yere xi month			in	dede		

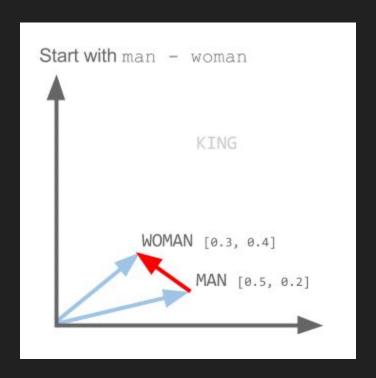
- John Lydgate, Kings of England, 15th cent.
- C.Howe, A.Barbrook, Manuscript evolution [2001]

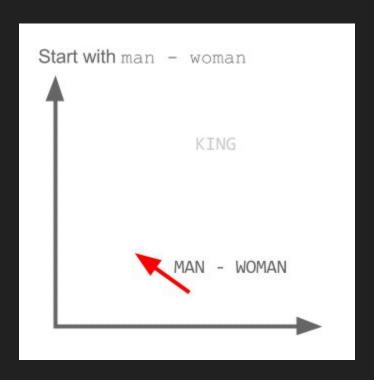
Phylogenetic trees...

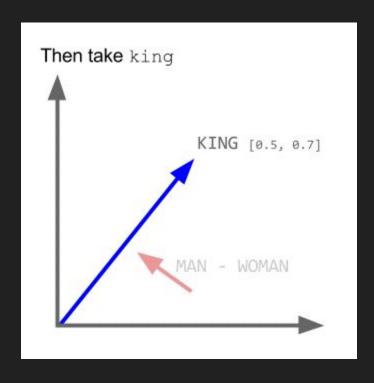

Phylogenetic trees... for texts!

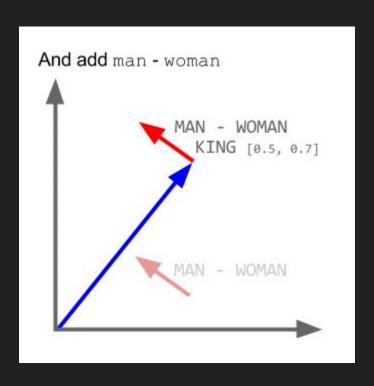


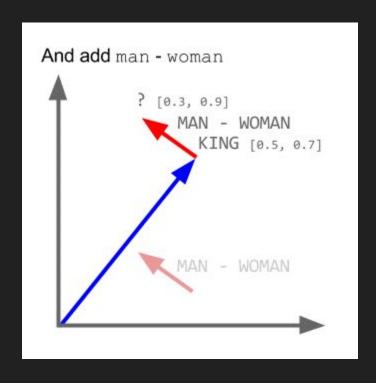


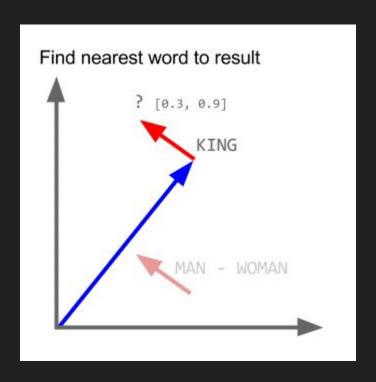

Most NLP algorithms require words and documents to be represented as vectors:

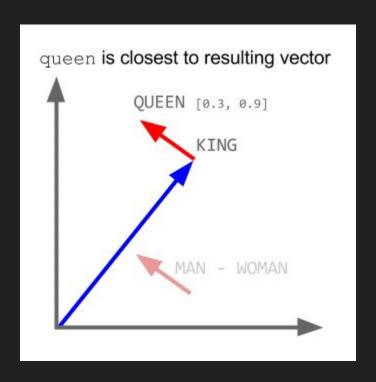

 This is a very high-dimensional representation. We would be much happier with something like this:

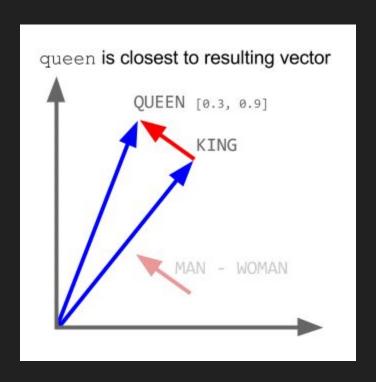


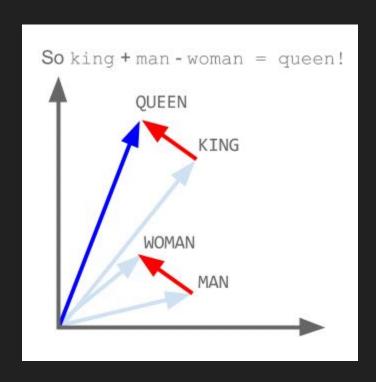


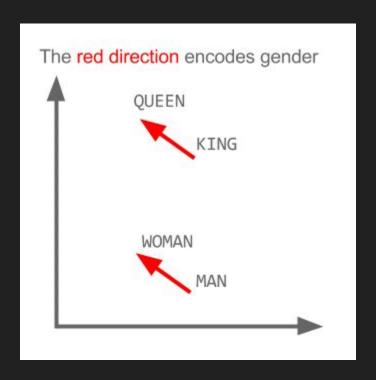


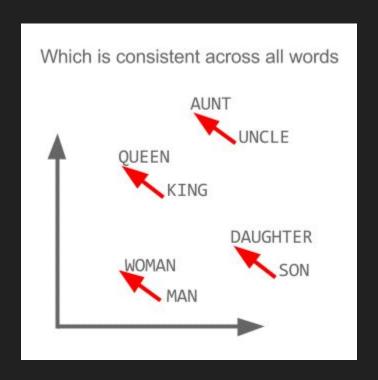


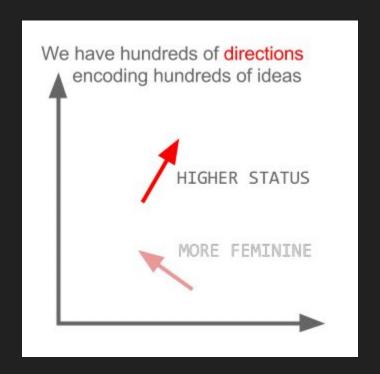




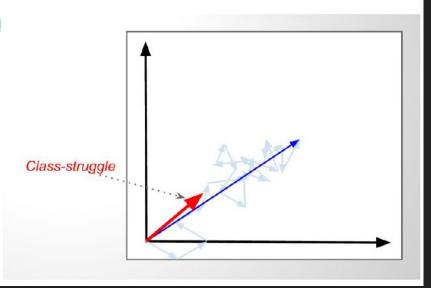








Averaging word vectors aka 'Naive document vector'


Just add word vectors together!

All words in a book

'A tale of two cities'

Should add up to

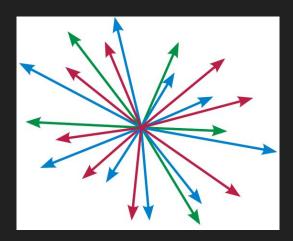
'class-struggle'

- Trained on texts as sequences of words, not letters
- Alphabet = all words in the corpus
- Fits vectors based on the context of each word:

government debt problems turning into banking crises as has happened in saying that Europe needs unified banking regulation to replace the hodgepodge

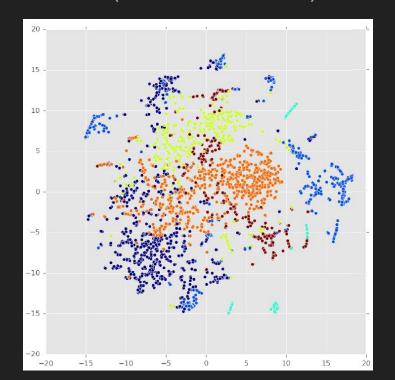
What if we train Word2Vec on texts in some other alphabet?

Word2Vec - Financial data

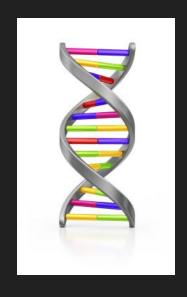

Sberbank Data Science Hakhathon 2016

MCC Code	Transaction time	
4814	2016-09-02 10:52:11	
4814	2016-09-02 14:13:15	
6010	2016-09-02 21:33:44	
6011	2016-09-03 13:00:03	
4814	2016-09-04 12:34:58	
5003	2016-09-04 19:41:32	

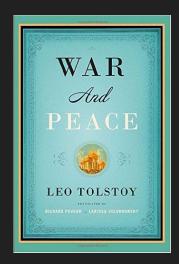
MCC Code = type of transaction (ATM withdrawal / payment at a restaurant / ...)


Step 1: Mcc2Vec

- Each transaction = a "word"
- Transactions form "sentences" groups of transactions split by < 12 hours
- Context for each transaction = its sentence
- Word2Vec on transactions ⇒ embedding MCC codes into a vector space



Step 2: Client2Vec


- Client vector = sum of MCC vectors (~100-dimensional)
- t-SNE on client vectors:

⇒ customer segmentation!

