Formal Methods - Homework Closure under complementation of tree automata

Mikhail Dubov

January 21, 2016

Outline

- Tree automata
- 2 Infinite games
- 3 Game-theoretical view on tree automata
- 4 Complementation theorem

Infinite trees & Tree automata

Automata considered so far are word automata:

- consume sequences of alphabet symbols
- ω -automata consume **infinite sequences**, i.e. ω -words

We will take a look at tree automata [1]:

- process infinite trees, not words
- are still finite-state

Infinite trees & Tree automata: Motivation

Automata on infinite objects, in particular trees, play an important role in computer science:

- They allow to model nonterminating systems
- Tree automata are more suitable than words when nondeterminism needs to be modelled
- There are connections to logical theories (e.g. to MSO [2])

Infinite trees: Definitions

Infinite binary tree:

- Set $T^{\omega} = \{0,1\}^*$ of all finite words on $\{0,1\}$
- Elements $u \in T^{\omega}$ are nodes:
 - € is the root
 - u0 and u1 are left and right successors of u
- v is a successor of u if there exists a $w \in T^{\omega}$ s.t. v = uw

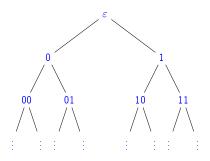


Figure: Infinite binary tree

Tree automata Infinite games Game-theoretical view on tree automata Complementation theorem References

Infinite trees: Definitions

Σ-labeled tree:

- Mapping $t: T^{\omega} \to \Sigma$ labels the nodes with symbols from Σ
- T_{Σ} set of all Σ -labeled trees
- ullet ω -word $\pi \in \{0,1\}^\omega$ is a ${f path}$ in the binary tree ${m T}^\omega$
 - ullet Prefixes of π are nodes on that path
 - We are interested in the **labeling of a path** π through t: $t \mid \pi$

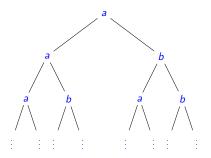


Figure: $\{a, b\}$ -labeling: $t(\varepsilon) = a$, t(w0) = a, t(w1) = b

Tree automata: Definitions

Notdeterministic finite-state tree automaton:

- Intuitive definition:
 - Word automata: each input symbol has one successor word automaton enters one successor state
 - Tree automata: each input node has two successors tree automaton enters two successor states
- Formal definition (Muller tree automaton):
 - Muller tree automaton is a quintuple $\mathcal{A} = (Q, \Sigma, \Delta, q_I, \mathcal{F})$
 - Q: finite state set
 - Σ: finite alphabet
 - $\Delta \subseteq Q \times \Sigma \times Q \times Q$: transition relation
 - q: initial state
 - \bullet \mathcal{F} : collection of sets of accepting states

Tree automata: Definitions

- A run of \mathcal{A} on an input labeled tree $t \in \mathcal{T}_{\Sigma}$ is a labeled tree $\varrho \in \mathcal{T}_{Q}$, satisfying:
 - $\rho(\varepsilon) = q_I$
 - for all $w \in \{0,1\}^* : (\varrho(w), t(w), \varrho(w0), \varrho(w1)) \in \Delta$
- A run is called successful if for each path $\pi \in \{0,1\}^{\omega}$ the Muller acceptance condition is satisfied (i.e. $Inf(\varrho|\pi) \in \mathcal{F}$)
- \mathcal{A} accepts the tree t if there is a successful run of \mathcal{A} on t
- The tree language recognized by A is the set $T(A) = \{t \in T_A | A \text{ accepts } t\}$

Tree automata: Example

Consider the tree language

```
T=\{t\in T_{\{a,b\}}| 	ext{ there is a path } \pi 	ext{ through } t 	ext{ such that } t|\pi\in (a+b)^*(ab)^\omega\}.
```

Muller tree automaton A that recognizes T:

- "guesses" a path through t
- checks if the label of this path belongs to $(a + b)^*(ab)^{\omega}$
 - \bullet for this purpose, ${\cal A}$ has to memorize in its state the last read input symbol
 - we use states q_a and q_b
 - therefore \mathcal{F} includes the acceptance set $\{q_a, q_b\}$
 - for the nodes outside the "guessed path", we will use state q_d

Tree automata: Example

$$T=\{t\in T_{\{a,b\}}| ext{ there is a path } \pi ext{ through } t ext{ such that } t|\pi\in (a+b)^*(ab)^\omega\}$$

Formally,
$$\mathcal{A} = (\{q_I, q_a, q_b, q_d\}, \{a, b\}, \Delta, q_I, \{\{q_a, q_b\}, \{q_d\}\}).$$

Transition relation \triangle includes:

- initial transitions:
 - $(q_1, a, q_a, q_d), (q_1, a, q_d, q_a), (q_1, b, q_b, q_d), (q_1, b, q_d, q_b)$
 - for paths we are not interested in:

$$(q_d, a, q_d, q_d), (q_d, b, q_d, q_d)$$

- for checking $(ab)^{\omega}$: $(q_a, b, q_b, q_d), (q_a, b, q_d, q_b), (q_b, a, q_a, q_d), (q_b, a, q_d, q_a)$
- for falling back to checking the prefix $(a + b)^*$: $(q_a, a, q_l, q_d), (q_a, a, q_d, q_l), (q_b, b, q_l, q_d), (q_b, b, q_d, q_l)$

Tree automata: Example

Example of a successful run ϱ on the input tree t from the previous example:

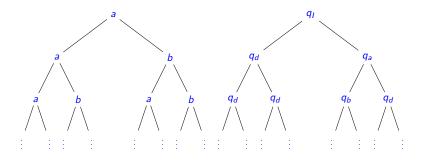


Figure: Input tree t and a sample successful run ϱ on this tree

Tree automata: More formalisms

Exactly as with ω -automata, we can define tree automata in different ways based on the **acceptance condition**.

- Muller condition: Set of states visited infinitely often is equal to one of the sets in \mathcal{F}
- Parity condition: For some coloring of the states, the minimal number of colors visited infinitely often is even
- Rabin condition, Streett condition, ...
- Büchi condition: For some coloring of the states and a set of accepting colors F, some of the colors visited infinitely often belong to F

NB: Muller, parity, Rabin, Streett tree automata are equivalent.

NB: Büchi tree automata are strictly weaker.

Tree automata: More formalisms

Parity tree automaton:

- A quintuple $\mathcal{A} = (Q, \Sigma, \Delta, q_I, c)$
- $c: Q \to \{0, \dots, k\}, k \in \mathbb{N}$ coloring function
- A run of \mathcal{A} on an input labeled tree $t \in \mathcal{T}_{\Sigma}$ is again a labeled tree $\varrho \in \mathcal{T}_{Q}$
- A run is successful if for each path $\pi \in \{0,1\}^{\omega}$ the parity acceptance condition is satisfied: $\min\{c(q)|q \in Inf(\rho|\pi)\}\$ is even

Tree automata: More formalisms

Consider the tree language

```
T = \{t \in T_{\{a,b\}} | \text{ for each path } \pi \text{ through } t \text{ holds } t | \pi \in a^{\omega} \cup (a+b)^* b^{\omega} \}.
```

- Unlike the previous example, the automaton doesn't have to "guess" a path but should check all paths simultaneously
- Therefore, for each state the left and right successor states will be identical
- We can build a parity tree automaton for this language

Parity tree automata: Example

$$T = \{t \in T_{\{a,b\}}| \text{ for each path } \pi \text{ through } t \text{ holds } t | \pi \in a^{\omega} \cup (a+b)^*b^{\omega}\}.$$

- Now we need only 3 states q_1 , q_a , q_b (no need for q_d)
- Transitions include:
 - initial transitions: $(q_I, b, q_b, q_b), (q_I, a, q_I, q_I)$ (reading b means that a^{ω} is impossible)
 - in state q_b : (q_b, b, q_b, q_b) , (q_b, a, q_a, q_a)
 - in state q_a : (q_a, a, q_a, q_a) , (q_a, b, q_b, q_b)
- Coloring: $c(q_a) = 1$, $c(q_b) = c(q_I) = 2$
- For this coloring, the parity condition indeed ensures that A accepts T

Tree automata languages

Finite tree automata languages are closed under union, intersection, projection and complementation.

Complementation is the most difficult one to prove:

- Original proof by Rabin [2] is rather complicated
- The proof can be much simplified using a game-theoretically based approach [4]

We are interested in **infinite two-person games** on **directed graphs**.

Game = Arena + Winning Condition

An arena is a triple $\mathcal{A} = (V_0, V_1, E)$, where

- V_0 is a set of **0-vertices** that belong to **Player 0**
- V_1 is a set of 1-vertices that belong to Player 1
- $V = V_0 \cup V_1, \ V_0 \cap V_1 = \emptyset$
- $E \subseteq V \times V$ is a set of moves (edges)
- The set of successors of $v \in V$ is $vE = \{v' \in V | (v, v') \in E\}$

A play of a game goes as follows:

- A **token** is placed on some initial vertex $v \in V$
- If v is a 0-vertex, then Player 0 moves the token from v to a successor $v' \in vE$ of v
- If v is a 1-vertex, then Player 1 moves the token from v to a successor $v' \in vE$ of v
- (V, E) is not required to be a bipartite graph so it is possible that Player O(1) moves the token to a O(1)-vertex
- The play can be **infinite**: it corresponds then to a **path** $\pi = v_0 v_1 v_2 \cdots \in V^{\omega}$ with $v_{i+1} \in v_i E \ \forall i \in \omega$
- The play can **stop** when a **dead end** (a vertex without successors) is reached: it corresponds then to a **path** $\pi = v_0 v_1 \dots v_l \in V^+$ with $v_{i+1} \in v_i E \ \forall i < l, v_l E = \emptyset$

A game is a pair $\mathcal{G} = (\mathcal{A}, Win)$, where:

- A is the arena of the game
- $Win \subseteq V^{\omega}$ is its winning set (the set of winning paths)

Player 0 is the winner of a play π of a game \mathcal{G} iff

- π is a finite play $\pi = v_0 v_1 \dots v_l \in V^+$ and v_l is a dead-end 1-vertex (so Player 1 can't move anymore)
- ullet π is an infinite play and $\pi \in Win$

Player 1 wins π if Player 0 does not win π .

To ensure that our state space is finite (this is required for acceptance conditions we will consider next), we **color** the vertices of an arena:

- Coloring function $\chi: V \to C$ (C is a finite set of colors)
- $\chi(\pi) = \chi(v_0)\chi(v_1)\chi(v_2)\dots$ is the coloring of a play

Infinite games: Acceptance conditions

We are interested in **winning sets** that can be described using the same acceptance conditions:

- Muller condition: $\pi \in Win$ iff $Inf(\chi(\pi)) \in \mathcal{F}$ (\mathcal{F} is a collection of sets of accepting colors)
- Parity conditions:
 - max-parity condition: $\pi \in Win$ iff $max(Inf(\chi(\pi)))$ is even
 - min-parity condition: $\pi \in Win$ iff $min(Inf(\chi(\pi)))$ is even
- Büchi condition: $\pi \in Win$ iff $Inf(\chi(\pi)) \cap F \neq \emptyset$ $(F \subseteq C \text{ is a set of accepting colors})$
- Rabin condition, Streett condition, ...

Infinite games: Example

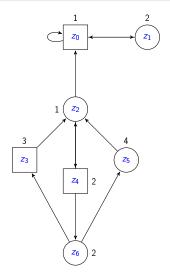


Figure: Example of a colored arena

Infinite games: Example

In the example, $\mathcal{A} = (V_0, V_1, E, \chi)$ is a **colored arena** with:

- 0-vertices $V_0 = \{z_1, z_2, z_5, z_6\}$
- 1-vertices $V_1 = \{z_0, z_3, z_4\}$
- Edge relation $E = \{(z_0, z_1), (z_2, z_0), \dots\}$
- Colors $C = \{1, 2, 3, 4\}$
- Coloring function χ : $\chi(z_4) = 2, \chi(z_0) = 1, \dots$

With the Muller acceptance condition given by

$$\mathcal{F} = \{\{1,2\}, \{1,2,3,4\}\},\$$

- $\pi=z_6z_3z_2z_4z_2z_4z_6z_5(z_2z_4)^{\omega}$ is a winning infinite play for Player 0, because
 - $\chi(\pi) = 23121224(12)^{\omega}$
 - $Inf(\chi(\pi)) = \{1, 2\} \in \mathcal{F}$
- $\pi = (z_2 z_4 z_6 z_3)^{\omega}$ is a winning infinite play for Player 1, because
 - $\chi(\pi) = (1223)^{\omega}$
 - $Inf(\chi(\pi)) = \{1, 2, 3\} \notin \mathcal{F}$

Infinite games: Strategies

A winning strategy for Player 0 on $U \subseteq V$ is a function $f_0: V^*V_0 \to V$ that

- is defined on every prefix of a play $\pi = v_0 v_1 \dots v_l$ that is conform with it (for every i s.t. $0 \ge i < I$ and $v_i \in V_0$ the function f_0 is defined at $v_0 \dots v_i$ and $v_{i+1} = f_0(v_0 \dots v_i)$
- leads to a win for Player 0 when applied repeatedly on a play starting in a vertex from U

 f_1 for Player 1 is defined in the same way.

A winning strategy for Player 0 on $U = z_2, z_3, z_4, z_5, z_6$ is

$$f(x) = \begin{cases} z_4, & \text{if } \pi \in V^* z_2 \\ z_3, & \text{if } \pi \in V^* z_5 z_2 z_4 (z_2 z_4)^* z_6 \\ z_5, & \text{if } \pi \in V^* z_3 z_2 z_4 (z_2 z_4)^* z_6 \\ z_3, & \text{if } \pi \in (V \{z_3, z_5\})^* z_6 \end{cases}$$

Infinite games: Strategies

A **strategy** is:

- forgetful if a finite amount of memory is sufficient for the corresponding Player to carry out this strategy
- memoryless if no memory is needed

In our example, the winning strategy for Player 0 is forgetful:

• Player 0 has to alternate between z_3 and z_5 to win from z_6 \Longrightarrow he has to remember whether he moved to z_3 or z_5 when the token was on z_6 last time

The winning strategy for Player 1 is **memoryless**:

• His strategy is just to move the token to z_0 when it is in z_0

Game-theoretical view on tree automata

Tree automata and infinite games are related.

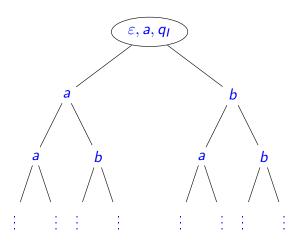
We can identify a parity tree automaton $\mathcal{A} = (Q, \Sigma, \Delta, q_I, c)$ and an input tree t with an **infinite two-person game** $\mathcal{G}_{\mathcal{A},t}$:

- Players 0 and 1 play the game on t, starting in the root
- The Players always move alternately:
 - Player 0 is an "automaton": he picks a transition from Δ matching the symbol at the current node t
 - Player 1 is a "pathfinder": he determines whether to procees with the left or the right successor.

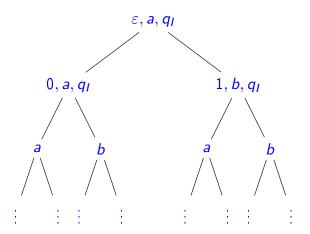
This sequence of actions represents a play of the game and induces an infinite sequence of states visited along the path in t.

Player 0 wins if this infinite state sequence satisfies the acceptance condition of A.

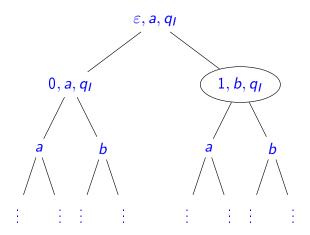
Initial tree (from the previous example):



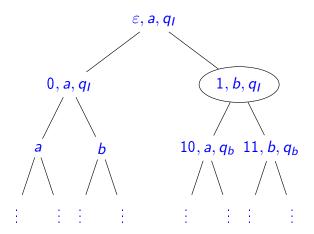
Player 0 picks a transition (the parity tree automaton is as before):



Player 1 picks the successor to proceed with:



Player 0 picks a transition:



Tree automata Infinite games Game-theoretical view on tree automata Complementation theorem References

Game-theoretical view on tree automata

A few more remarks:

- Game positions for Player 0 are $V_0 = \{(w, q) | w \in \{0, 1\}^*, q \in Q\}$
- Game positions for Player 1 are $V_1 = \{(w, \tau) | w \in \{0, 1\}^*, \tau \in \Delta_{t(w)}\}$
- At each move, Players 0 and 1 choose the next position for each other
- We can color both position types by the colors of their states: c((w,q)) = c(q) $c((w,(q,t(w),q'_0,q'_1))) = c(q)$
- Then $\mathcal{G}_{\mathcal{A},t}$ is a parity game

Lemma 1

A tree automaton A accepts an input tree t iff there is a winning strategy for Player 0 from position (ε, q_I) in the game $\mathcal{G}_{A,t}$.

Complementation theorem

Game-theoretical approach enables a simpler proof for the complementation theorem.

Theorem 2 (Complementation theorem)

The class of languages recognized by finite-state tree automata is closed under complementation.

- **Problem:** Given a parity tree automaton \mathcal{A} , specify a tree automaton \mathcal{B} that accepts all input trees rejected by \mathcal{A}
- Game-theoretical approach: there should be no winning strategy for Player 0 from position (ε, q_I) in the game $\mathcal{G}_{\mathcal{A},t}$ (Lemma 1)
 - \implies there exists a memoryless winning strategy starting at (ε, q_I) for Player 1 (known from the theory of parity games)
- B will check exactly this

Memoryless strategy for Player 1 is a function $f: \{0,1\}^* \times \Delta \rightarrow \{0,1\},$

determining a direciton 0 (left successor) or 1 (right successor):

- ullet Corresponds to another function $\{0,1\}^* o (\Delta o \{0,1\})$
- This function essentially represents a tree
- We call such trees **strategy trees**; if the strategy is winning for Player 1 in $\mathcal{G}_{\mathcal{A},t}$, we call it a **winning tree**
- There exists a winning tree for Player 1 iff \mathcal{A} (the parity tree automaton) does not accept the input tree t

Given a parity tree automaton \mathcal{A} and an input t we decide whether a tree s is not a winning tree for t using an ω -automaton \mathcal{M} with parity acceptance condition:

- \mathcal{M} checks for each path π of t and possible move by Player 0 whether the acceptane condition of \mathcal{A} is met
- If at least once A's acceptance condition is met, s cannot be a winning tree for t, and vice versa
- \mathcal{M} handles ω -words of form $u = (s(\varepsilon), t(\varepsilon), \pi_1)(s(\pi_1), t(\pi_1), \pi_2) \dots$
- We denote the language of all these words L(s, t)
- E.g. for a path $\pi=01100\ldots$ through the tree t, an ω -word $u\in L(s,t)$ could look like $(f_{\varepsilon},t(\varepsilon),0)(f_0,t(0),1)(f_{01},t(01),1)(f_{011},t(011),0)\ldots$

We have:

- Tree automaton A
- ω -automaton $\mathcal{M} = (Q, \Sigma', \Lambda, q_i, c)$ handling any trees s and t
- M nondeterministically checks for each possible move of Player 0 if the outcome is winning for Player 0
- \mathcal{M} 's alphabet $\Sigma' = \{(f, a, i) | f : \Delta \rightarrow \{0, 1\}, a \in \Sigma, i \in \{0, 1\}\}$
- ullet A and ${\mathcal M}$ have the same acceptance condition

Lemma 3

The tree s is a winning tree for t if and only if $L(s,t) \cap L(\mathcal{M}) = \emptyset$

 \Longrightarrow

- Consider any play of the game $\mathcal{G}_{\mathcal{A},t}$
- Assume $(q_j, t(\pi_1 \dots \pi_j), q'_0, q'_1) \in \Delta$ to be the choice of Player 0 in node $\pi_1 \dots \pi_j$
- Player 1 plays according to s: the successor state is determined by $s(\pi_1 \dots \pi_j)$, i.e. $q_{j+1} \in \{q_0', q_1'\}$
- $\varrho = q_1q_1q_2...$ is an infinite sequence of states visited along the play; it is also the run of \mathcal{M} on the corresponding ω -word $u = (s(\varepsilon), t(\varepsilon), \pi_1)(s(\pi_1), t(\pi_1), \pi_2) \cdots \in L(s, t)$
- We have $L(s,t) \cap L(\mathcal{M}) = \emptyset \implies \varrho$ is not accepting $\implies \mathcal{A}$ does not accept $t \implies s$ is a winning tree

 \iff :

- Assume $L(s,t) \cap L(\mathcal{M}) \neq \emptyset$, so there exists a path $\pi = \pi_1 \pi_2 \dots$ s.t. the corresponding ω -word $u = (s(\varepsilon), t(\varepsilon), \pi_1)(s(\pi_1), t(\pi_1), \pi_2) \dots \in L(\mathcal{M})$
- ullet So there is a successful run $\varrho=q_1q_1q_2\dots$ of ${\mathcal M}$ on u.
- For each transition $(q_j, (s(\pi_1 \dots \pi_j), t(\pi_1 \dots \pi_j), \pi_{j+1}), q_{j+1})$ in ϱ , there is a corresponding transition $\tau_j = (q_j, t(\pi_1 \dots \pi_j), q'_0, q'_1)$ of $\mathcal A$ such that $s(\pi_1 \dots \pi_j) = f_{\pi_1 \dots \pi_j}$ where $f_{\pi_1 \dots \pi_j}(\tau_j) = \pi_{j+1}$
- ullet If $\pi_{j+1}=0$ then $q_{j+1}=q_0'$ otherwise $q_{j+1}=q_1'$
- Let these transitions τ_j be the choices of Player 0 (Player 1 reacts by choosing $s(\pi_1 \dots \pi_j)$
- Since $\varrho = q_1q_1q_2\dots$ satisfies \mathcal{M} 's acceptance condition, Player 1 loses even though he played according to s
- s cannot be a winning tree for t: we get a contradiction $\Longrightarrow L(s,t) \cap L(\mathcal{M}) = \emptyset$

How to construct B?

- We got an automaton $\mathcal M$ that accepts all sequences over Σ' which satisfy $\mathcal A$'s acceptance condition
- But we need in a tree automaton ${\cal B}$ which recognizes ${\cal T}({\cal B}) = {\cal T}_{\Sigma} \setminus {\cal T}({\cal A})$
- So to construct \mathcal{B} , we first generate a word automaton \mathcal{S} s.t. $L(\mathcal{S}) = \Sigma' \setminus L(\mathcal{M})$
- We can apply Safra's determinization construction [3] to achieve this (details omitted)

The last thing to show is that indeed $T(B) = T_{\Sigma} \setminus T(A)$:

- Assume $t \in T(\mathcal{B})$, i.e. there exists an accepting run ϱ of \mathcal{B} on t
- Then for each path $\pi=\pi_1\pi_2\cdots\in\{0,1\}^\omega$ the corresponding state sequence satisfies the acceptance condition for the automaton $\mathcal S$ we constructed earlier
- So all words $u \in L(s,t)$ are accepted by S
- Since $L(S) = \Sigma' \setminus L(M)$, $L(s,t) \cap L(M) = \emptyset$
- Due to Lemma 3, s is a winning tree for Player 1, and $\mathcal A$ does not accept t

- Now let $t \notin T(A)$
- Then there exists a winning tree s for Player 1 s.t. $L(s,t) \cap L(\mathcal{M}) = \emptyset$
- It follows $L(s,t)\subseteq \mathcal{S}$, i.e. for each path $\pi=\pi_1\pi_2\cdots\in\{0,1\}^\omega$ there exists a run on the ω -word $u=(s(\varepsilon),t(\varepsilon),\pi_1)(s(\pi_1),t(\pi_1),\pi_2)\cdots\in L(s,t)$ that satisfies the acceptance condition for \mathcal{S}
- Hence by construction of $\mathcal B$ there exists an accepting run ϱ of $\mathcal B$ on t, so $t \in \mathcal T(\mathcal B)$

References

- [1] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata Logics, and Infinite Games: A Guide to Current Research. Springer-Verlag New York, Inc., New York, NY, USA, 2002.
- [2] Michael O. Rabin. Decidability of second-order theories and automata on infinite trees. Transactions of the American Mathematical Society, 141:1-35, 1969.
- [3] Shmuel Safra. On the complexity of ω -automata. In Foundations of Computer Science, 1988., 29th Annual Symposium on, pages 319-327. IEEE, 1988.
- [4] Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoretical Computer Science, 200(1-2):135 - 183, 1998.